

Etude écotoxicologique de la sensibilité aux contaminants métalliques de la moule perlière *Margaritifera margaritifera* en Dronne amont, Dordogne (France)

Baudrimont M.¹, Gonzalez P., Legeay A., Mesmer-Dudons N., Goursolle E., Chevalier J., Pecassou B., Papin-Vincent R.

¹ Université de Bordeaux, UMR CNRS EPOC 5805, Écotoxicologie Aquatique, Station Marine, Place du Dr Peyneau, 33120 Arcachon, France

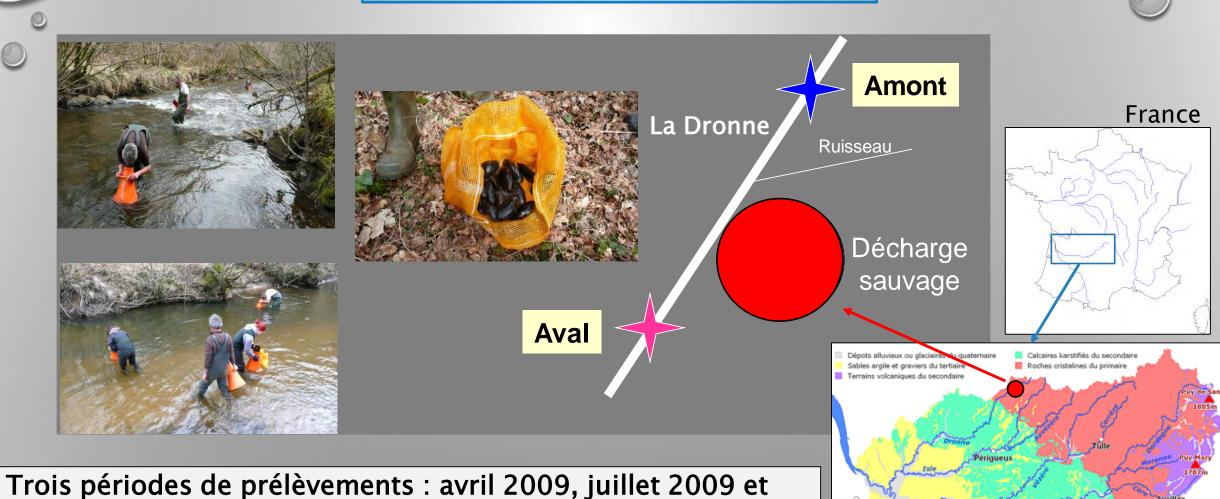
m.baudrimont@epoc.u-bordeaux1.fr

Contexte de l'étude

- Margaritifera margaritifera: espèce en voie de disparition en France.
 Protégée par les Annexes II et V de la Directive Habitats ainsi que par l'Annexe III de la convention de Berne. Liste rouge des espèces menacées d'extinction.
- Causes de son déclin au cours du XXème siècle : altération générale de la qualité de l'eau, destruction des habitats, colmatage des sédiments, pollution par les pesticides, phosphates et azotes responsables de l'eutrophisation.

Contexte de l'étude

- Environ 100 000 individus sont recensés en France. En Dordogne : population de 15 000 individus localisée sur la Dronne.
- Rivière Dronne : peu polluée, mais activités de son Bassin versant ont conduit à une certaine dégradation progressive de sa qualité.
- Exemple : décharge sauvage à St Saud Lacoussière, juste au-dessus d'un pavage de *M. margaritifera* (1000 à 1500 individus)
- → Impact direct des micropolluants sur les organismes?
- Très peu d'études écotoxicologiques développées sur la moule perlière.


Objectifs de l'étude

- Impact potentiel de la décharge sauvage de St Saud Lacoussière sur la population de *M. margaritifera* en Dronne.
- Impact ciblé de deux contaminants bien connus pour impacter les bivalves : le cadmium et l'arsenic, à partir d'études développées en conditions contrôlées de laboratoire.
- Connaissances nouvelles sur la sensibilité de l'espèce aux micropolluants métalliques et ainsi identifier les populations à risque in situ.

Autorisation de prélèvement de 113 individus sur la Dronne a été accordée par le Ministère de l'Environnement en 2009 pour développer ces premières études écotoxicologiques sur l'espèce

Prélèvements de terrain

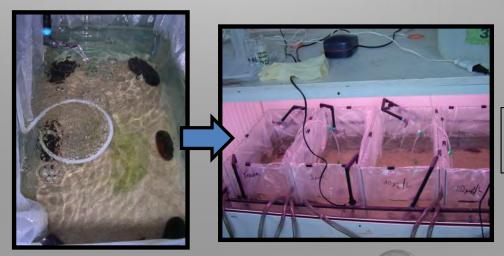
Bassin de la Dordogne

Trois périodes de prélèvements : avril 2009, juillet 2009 et mars 2010

10 individus amont et 10 individus aval à chaque période → 60 individus au total

Expérimentation en laboratoire

Témoin Amont décharge


Aval décharge

Cadmium 2 μg/L

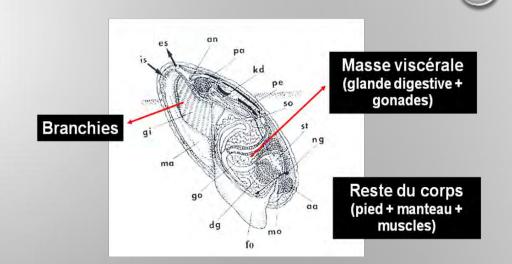
Cadmium 5 μg/L

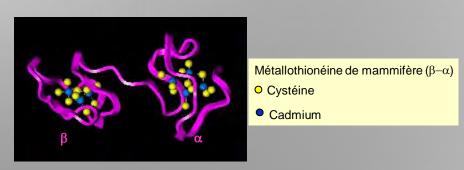
Oestradiol

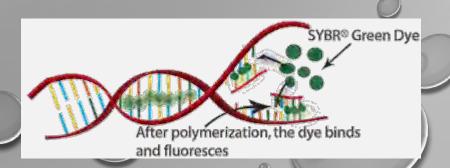
7 cm sable
Eau de la Dronne
6 individus par bac
T°C = 18,76±0,13°C
O2 = 9,11±0,03 mg/L
pH = 7,20±0,05
16h jour / 8h nuit

14 j d'acclimatation7 j d'exposition

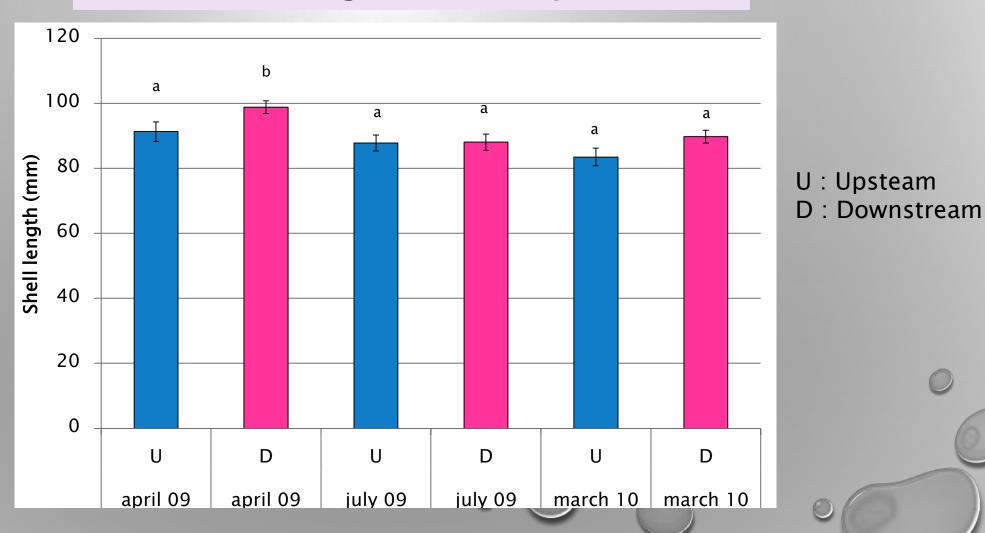
→ 30 individus expérimentés en juillet 2009




Paramètres analysés

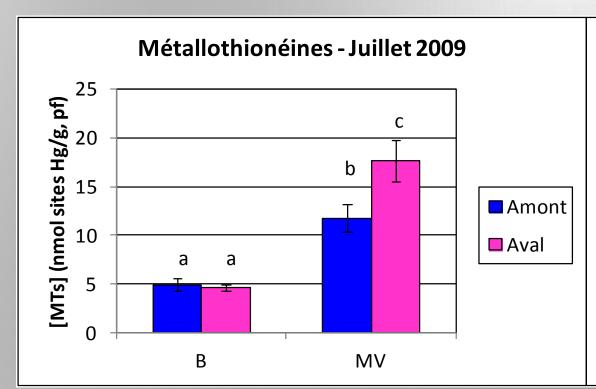


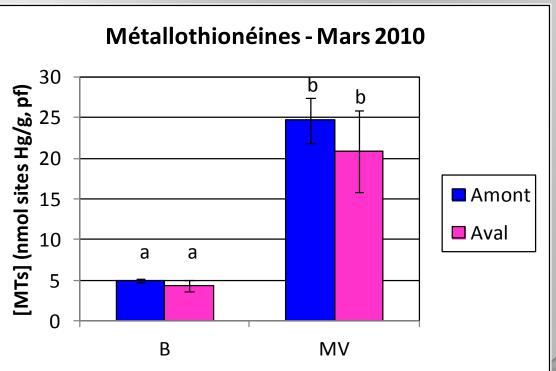
- Analyses en microscopie de la gonade
- Bioaccumulation des métaux dans les organes
- Quantification des métallothioneines
- Dosage du malonedialdehyde
- Quantification relative de l'expression des gènes (ARNm)



Mesure de la longueur des coquilles (mm)

Bioaccumulation du cadmium (Cd)


Métaux analysés : Ag, Al, As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, Zn


> Résultats équivalents pour : Pb, Cr, As et Co

Concentrations en métallothionéines (MTs)

Réponse significative de détoxication face aux métaux

Expression quantitative des gènes

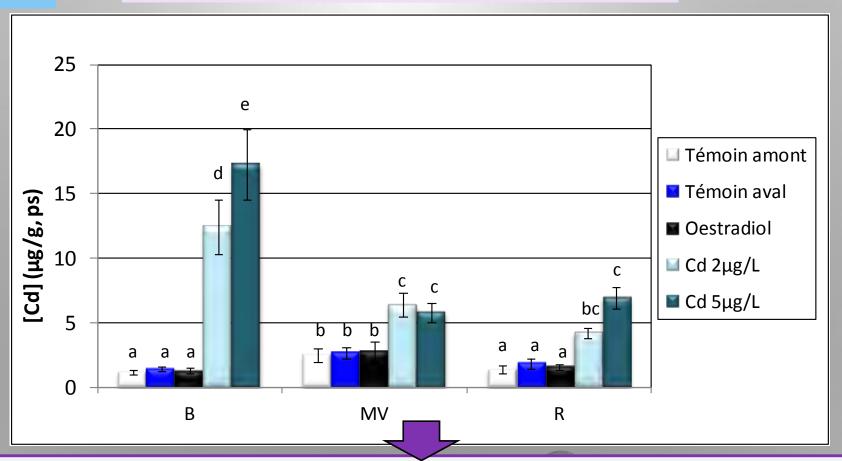
Facteurs d'induction (> 1) ou de répression (< 1) des gènes entre l'amont et l'aval mesurés en Juillet 2009

Fonction	Organe	Branchies	Masse viscérale	Rein
Lutte contre	sod	1,09	1,91	0,72
le stress oxydant	sodMn	0,65	1,65	0,79
Métabolisme	125	0,75	0,75	0,51
mitochondrial	coxl	1,53	2,61	2,15
Détoxication	mt	0,31	1,81	0,58

Pour les trois organes : perturbation significative du métabolisme mitochondrial à l'aval par rapport à l'amont

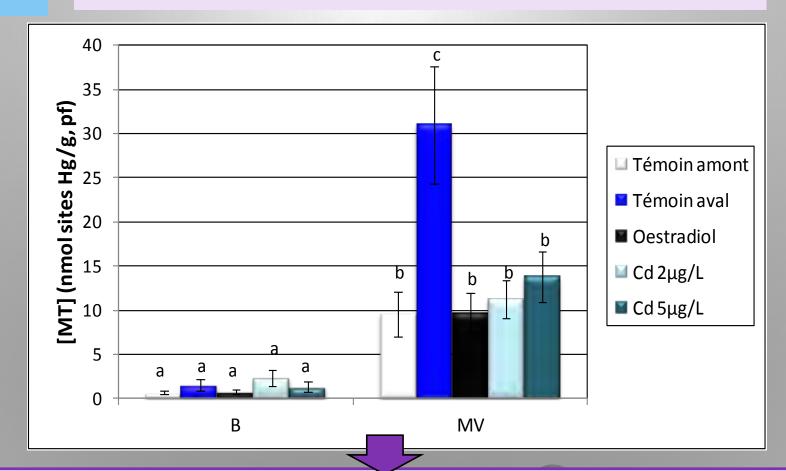
Facteurs d'induction (> 1) ou de répression (< 1) des gènes entre l'amont et l'aval mesurés en Juillet 2009

Fonction	Organe	Branchies	Masse viscérale	Rein
Lutte contre	sod	1,09	1,91	0,72
le stress oxydant	sodMn	0,65	1,65	0,79
Métabolisme	125	0,75	0,75	0,51
mitochondrial	coxl	1,53	2,61	2,15
Détoxication	mt	0,31	1,81	0,58


Masse viscérale: stress oxydant significatif et détoxication par les métallothionéines

Effet significatif de la décharge de St saud Lacoussière sur les moules perlières de la Dronne, en terme de bioaccumulation métallique, de mécanismes de détoxication et d'effets génétiques

Laboratoire


Bioaccumulation du cadmium (Cd)

Accumulation significative du Cd dans les conditions Cd dès 2 µg/L avec un faible effet gamme

Laboratoire

Concentrations de métallothionéines (MTs)

Pas de réponse des MTs au Cd en laboratoire, mais réponse significative des MTs dans la masse viscérale en conditions Témoin aval

Fonction	Branchies	Aval/Amont	Oest/Amont	2μgCd/Amont	5μgCd/Amont
Lutte contre le	sod	0,51	0,15	0,34	0,12
stress oxydant	sodMn	6,00	1,34	0,62	0,55
Métabolisme	12S	1,76	3,85	0,56	7,63
mitochondrial	coxl	3,31	1,36	4,41	19,51
Détoxication	mt	36,32	0,99	3,65	18,12
 . .		Aval/Amont	Oest/Amont	2uaCd/Amont	SugCd/Amont

Aval par rapport à l'amont :

- Stress oxydant
- Perturbation du métabolisme mitochondrial

Lutte contre le stress oxydant

Métabolisme mitochondrial

Détoxication

sodMn

12S

coxl

mt

Détoxication

	Dett	IXICALION	1111	(30,32)	0,99	5,05	10,12
۱:	<u>t</u> :	ction	Masse viscérale	Aval/Amont	Oest/Amont	2µgCd/Amont	5µgCd/Amont
		e tre le	sod	0,47	0,72	0,71	0,64
		ss /dant	sodMn	1,94	4,33	6,05	1,77
Ī	al	abolisme	12S	16,88	2,26	0,96	0,64
		chondrial	coxl	10,51	6,52	3,41	7,44
	Déto	oxication	mt	15,19	1,60	4,77	9,38
	Fon	ction	Rein	Aval/Amont	Oest/Amont	2µgCd/Amont	5µgCd/Amont
	Lutt	e contre le	sod	0,51	0,04	0,81	0,48

0,80

0,17

2,61

0,57

0,33

0,82

35,25

6,81

0,73

1,37

181,20

22,48

1,08

13,67

3,31

1085,04

Laboratoire

						,
F	onction	Branchies	Aval/Amont	Oest/Amont	2µgCd/Amont	5µgCd/Amont
	utte contre le	sod	0,51	0,15	0,34	0,12
	tress oxydant	sodMn	6,00	1,34	0,62	0,55
N	létabolisme	12S	1,76	3,85	0,56	7,63
	nitochondrial	coxl	3,31	1,36	4,41	19,51
D	Détoxication	mt	36,32	0,99	3,65	18,12
	tion	Masse viscérale	Aval/Amont	Oest/Amont	2µgCd/Amont	5µgCd/Amont
	e tre le	sod	0,47	0,72	0,71	0,64

Effet de l'oestradiol:

- Stress oxydant
- Perturbation du métabolisme mitochondrial

Détoxication

mt

	Déto	oxication	mt	36,32	0,99	3,65	18,12
		tion	Masse viscérale	Aval/Amont	Oest/Amont	2μgCd/Amont	5μgCd/Amont
		e tre le	sod	0,47	0,72	0,71	0,64
		/dant	sodMn	1,94	4,33	6,05	1,77
dri	al	abolisme	12S	16,88	2,26	0,96	0,64
		chondrial	coxl	10,51	6,52	3,41	7,44
	Déto	oxication	mt	15,19	1,60	4,77	9,38
	Fond	ction	Rein	Aval/Amont	Oest/Amont	2μgCd/Amont	5μgCd/Amont
	Lutt	e contre le	sod	0,51	0,04	0,81	0,48
		ss oxydant	sodMn	1,08	0,80	0,33	0,73
	Méta	abolisme	12S	13,67	0,17	0,82	1,37
		ochondrial	coxl	3,31	2,61	35,25	181,20

1085,04

0,57

6,81

22,48

Fonction	Branchies	Aval/Amont	Oest/Amont	2µgCd/Amont	5µgCd/Amont
Lutte contre le	sod	0,51	0,15	0,34	0,12
stress oxydant	sodMn	6,00	1,34	0,62	0,55
Métabolisme	12S	1,76	3,85	0,56	7,63
mitochondrial	coxl	3,31	1,36	4,41	19,51
Détoxication	mt	36,32	0,99	3,65	18,12

Effet Cd:

- Stress oxydant
- Perturbation du métabolisme mitochondrial

Fonction

Lutte contre le stress oxydant

Métabolisme

mitochondrial

Détoxication

Rein

sod

12S

coxl

mt

sodMn

Détoxication

	tion	Masse viscérale	Aval/Amont	Oest/Amont	2µgCd/Amont	5µgCd/Amont
	e tre le	sod	0,47	0,72	0,71	0,64
	/dant	sodMn	1,94	4,33	6,05	1,77
ial	abolisme	12S	16,88	2,26	0,96	0,64
	chondrial	coxl	10,51	6,52	3,41	7,44
Dét	oxication	mt	15,19	1,60	4,77	9,38
L		. .	Aval/Amont	Oest/Amont	2μgCd/Amont	5µgCd/Amont

0.04

0,80

0,17

2,61

0,57

0.81

0,33

0,82

35,25

6,81

0,48

0,73

1,37

(181,20)

22,48

0,51

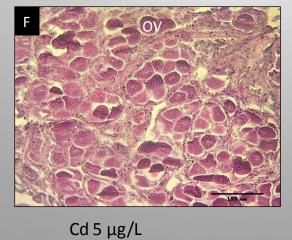
1,08

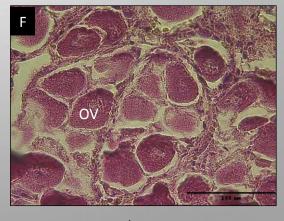
13,67

3,31

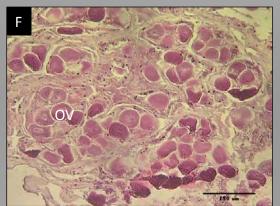
1085,04

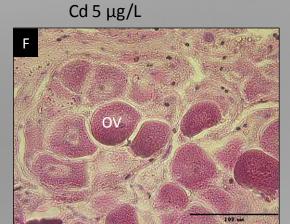
Analyses histologiques de la gonade

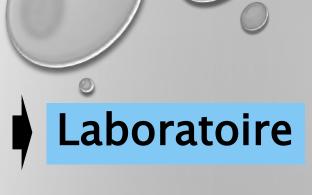




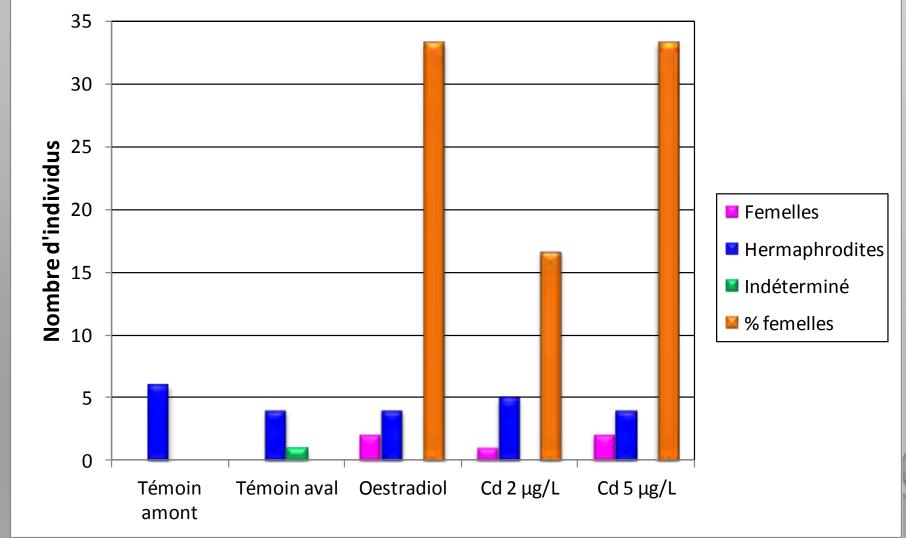
Témoin Amont






Femelle

Le Cd mime l'effet de l'oestradiol: Perturbateur endocrinien



Proportions d'individus femelles ou hermaphrodites

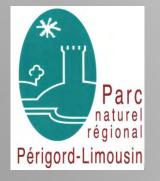
Conclusion

- Bioaccumulation significative de Cd, Pb, Cr, As et Co à l'aval de la décharge de St Saud Lacoussière par rapport à l'amont.
 - Augmentation significative des concentrations de métallothionéines (détoxication), génération d'un stress oxydant et perturbation du métabolisme mitochondrial.
 - Bioaccumulation du Cd significative en fonction des conditions 2 et $5 \mu g/L$ montrant une capacité d'intoxication rapide par ce métal.
 - Par contre, pas de réponse des métallothionéines en laboratoire (temps trop court?), alors que les gènes impliqués dans la lutte contre le stress oxydant, dans le métabolisme mitochondrial et dans la détoxication sont surexprimés > mise en place d'une réponse adaptative précoce.
 - Rôle de perturbateur endocrinien du cadmium.
 - Prédominance d'individus hermaphrodites aussi bien à l'amont qu'à l'aval sur la Dronne.

Perspectives

- Approfondir les analyses issues des prélèvements de terrain et des expérimentations de laboratoire réalisées en 2009/2010
- Développer une méthode d'étude écotoxicogénomique des moules perlières non invasive par le séquençage haut débit du transcriptome puis l'analyse sur l'hémolymphe d'individus in situ
- Mettre en place une ferme d'élevage afin de sauvegarder l'espèce sur la Dronne
- Développer des études de sensibilité aux micropolluants et aux facteurs environnementaux sur les stades juvéniles les plus sensibles de la moule

Projet Life+ Nature LIFE13 NAT/FR/000506
Préservation de *Margaritifera margaritifera* et restauration de la continuité écologique de la Haute Dronne



Merci de votre attention!!!

Paramètres analysés

Gènes recherchés, clonés et séquencés

Fonction	Gène	Amorce oligonucléotidique (5'-3')
Gène de	β- actine	ATGTATGTTGCCATTCAGGCTGTa
référence	p- acune	GATGTCGACATCACACTTCATGATb
	sod	GTGAAGTTAAAGGAACTGTCAAGa
Lutte contre le	Sou	CCACCACAGTTCTGCCAATGATGGAb
stress oxydant	sodMn	AATGGTGGTCATATTAATCACTCa
		GGTATCAGACCTGTTGTTGGTT b
Métabolisme	12S	TGGTGCCAGCAGTCGCGGTTATACCa
mitochondrial	125	ACCCCTACTATGTTACGACTTATCCb
Détoxication	mt	GAATTCAGATTTTGAAGCACCGAAGATa
Detoxication		TCATTTGCATGAACATCCAGAGTCb